# A new reaction of arylphospholes: site-selective phosphorylation through reaction with phosphorus tribromide 

György Keglevich,*a Tungalag Chuluunbaatar, ${ }^{a}$ András Dobó ${ }^{b}$ and László Tőke ${ }^{c}$<br>${ }^{a}$ Department of Organic Chemical Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary.E-mail: keglevich@oct.bme.hu<br>${ }^{b}$ Hungarian Academy of Sciences, Chemical Research Center, 1525 Budapest, Hungary<br>${ }^{c}$ Research Group of the Hungarian Academy of Sciences at the Department of Organic<br>Chemical Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary

Received (in Cambridge, UK) 14th March 2000, Accepted 4th April 2000

The reaction of arylphospholes 1a-c with phosphorus tribromide followed by treatment with morpholine afforded the 2 - or 3 -substituted species $3 \mathrm{a}, \mathrm{b}$ or 7 (which after oxidation gave $4 \mathrm{a}, \mathrm{b}$ or 8 ) in a selective manner.

Phospholes are useful ligands in transient metal complexes and have attracted considerable attention recently. ${ }^{1-3}$ Not much is known, however, of the substitution reactions of this representative class of P-heterocycles. The modification of phospholes is of interest, as it may lead to P-ligands with new properties. For this reason, it was a challenge for us to study the substitution reactions of some arylphospholes available from our previous work. ${ }^{4-6}$

In this paper, we disclose our results on the substitution of (trialkylphenyl)phospholes 1a-c with phosphorus tribromide. Phosphorus halogenides are known to be useful in the phosphorylation of pyrroles. ${ }^{7,8}$ The reaction of (trimethylphenyl)phosphole 1a ${ }^{4}$ and (triisopropylphenyl)phosphole $\mathbf{1 b}^{5}$ with phosphorus tribromide in boiling chloroform in the presence of pyridine furnished 2-substituted products $\mathbf{3 a}$ and $\mathbf{3 b}$, respectively, after treatment with morpholine (Scheme 1). To obtain stable derivatives, diphosphines $\mathbf{3 a}$ and $\mathbf{3 b}$ were oxidised to compounds $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively. It is noteworthy that the exocyclic P-moiety underwent selective oxidation, while the phosphorus heteroatom of the phosphole remained mostly unoxidised. According to ${ }^{31} \mathrm{P}$ NMR, the conversion of phospholes $\mathbf{1}$ to products $\mathbf{4}$ was $c a .70 \%$. The yield of phosphole derivatives 4a,b was $c a .45 \%$ after purification by column chromatography. Intermediates $\mathbf{3}$, as well as products 4 were characterised by ${ }^{31} \mathrm{P}$ NMR; ${ }^{2} J_{\mathrm{PP}}$ couplings of $c a .72$ and 49 Hz , respectively, were detected. ${ }^{9-12}$ The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ revealed that the protons of the hetero ring were not coupled to each other. ${ }^{1,12}$ The structure of product $\mathbf{4 b}$ was also supported by ${ }^{13} \mathrm{C}$ NMR. ${ }^{12}$ Bis(phosphine oxides) 5a,b were also formed in the above mentioned oxidation reactions in ca. 14\% yields. ${ }^{13,14}$ Unlike other phosphole oxides, ${ }^{15}$ these species resisted undergoing dimerization and could be stored at room temperature for weeks.

A similar transformation of (tri-tert-butylphenyl)phosphole, $\mathbf{1 c},{ }^{16}$ resulted in the formation of product $\mathbf{8}$ via intermediates $\mathbf{6}$ and 7 (Scheme 2). Interestingly, the substitution took place at position 3 of the phosphole moiety. The different outcome is probably the consequence of the steric hindrance around the phosphorus heteroatom in 1c. Species 7 and $\mathbf{8}$ were characterised as above. ${ }^{3} J_{\mathrm{PP}}$ couplings of 50.4 and 21.8 Hz were obtained for 7 and 8, respectively. ${ }^{16,17}$ The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectral parameters of compound $\mathbf{8}$ were also consistent with the substitution in position 3. ${ }^{17}$

As can be seen, the phosphorylated phospholes are excellent models for the study of the ${ }^{2} J_{\mathrm{PP}}$ and the ${ }^{3} J_{\mathrm{PP}}$ couplings.

In the mechanism proposed, the $\pi$-electrons of the double bond in phosphole $\mathbf{1}$ attack the phosphorus atom of the reagent


2


$R=M e(a), \operatorname{Pr}^{i}(b)$
Scheme 1


5a,b
as a nucleophile to give intermediate $\mathbf{9}$ or $\mathbf{1 0}$ that may be stabilised by the loss of a proton, by pseudorotation and finally by the departure of a bromide anion.

In summary a new reaction of arylphospholes was explored; their interaction with phosphorus tribromide resulted in





Scheme 2


2 -substitution, or, in the case of the starting material with a bulky $P$-aryl group, the reaction led to 3 -substitution.
Future work will be directed towards the utilisation of the above reaction in the preparation of a variety of phosphoric amides and esters and a study of their properties.

## Experimental

General procedure for the phosphorylation of phospholes 1a-c
Phosphorus tribromide ( $0.12 \mathrm{~cm}^{3}, 1.26 \mathrm{mmol}$ ) and pyridine $\left(0.10 \mathrm{~cm}^{3}, 1.24 \mathrm{mmol}\right)$ were added to phosphole $\mathbf{1 a}, \mathbf{1 b}$ or $\mathbf{1 c}$ ( 1.17 mmol ) in dry $\mathrm{CHCl}_{3}\left(50 \mathrm{~cm}^{3}\right)$, and the solution was stirred at boiling point for 48 h under a nitrogen atmosphere. The volatile components were removed in vacuo to give $\mathbf{2 a}, \mathbf{2 b}$ or $\mathbf{6}$, respectively.
The intermediate ( $\mathbf{2 a}, \mathbf{2 b}$ or $\mathbf{6}$ ) ( $\sim 1.17 \mathrm{mmol}$ ) was taken up in dry benzene $\left(50 \mathrm{~cm}^{3}\right)$ and treated with morpholine $\left(0.41 \mathrm{~cm}^{3}\right.$, 4.70 mmol ) at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 1 h , the mixture was filtered and the solvent of the filtrate evaporated to afford 3a, 3b or 7, respectively.

The bisphosphine ( $\mathbf{3 a}, \mathbf{3 b}$ or $\mathbf{7}$ ) ( $\sim 1.17 \mathrm{mmol}$ ) was dissolved in $\mathrm{CHCl}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and oxidised by the addition of $30 \%$ hydrogen peroxide $\left(0.68 \mathrm{~cm}^{3}, \sim 6.0 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 1 h , the mixture was extracted with water $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent evaporated and the residue so obtained purified by repeated column chromatography (silica gel, $3 \% \mathrm{MeOH}$ in $\mathrm{CHCl}_{3}$ ) to furnish product $\mathbf{4 a}, \mathbf{4 b}$ or $\mathbf{8}$, respectively.

## Acknowledgements

Thanks are due to OTKA for financial support (Grant No.: T 029039). T. C. is grateful for the support from the Ministry of Education.

## Notes and references

1 K. B. Dillon, F. Mathey and J. F. Nixon, in Phosphorus: the Carbon Copy, from Organophosphorus to Phospha-Organic Chemistry, Wiley, Chichester, 1998, ch. 8, p. 203.
2 L. D. Quin, 'Phospholes', in Comprehensive Heterocyclic Chemistry II, vol. 2, eds. A. R. Katritzky, C. W. Rees and E. F. V. Scriven, vol. ed. C. W. Bird, Pergamon, Oxford, 1996.
3 Zs. Csók, Gy. Keglevich, Gy. Petőcz and L. Kollár, Inorg. Chem., 1999, 38, 831.
4 L. Nyulászi, L. Soós and Gy. Keglevich, J. Organomet. Chem., 1998, 566, 29.
5 Gy. Keglevich, L. D. Quin, Zs. Böcskei, Gy. M. Keserű, R. Kalgutkar and P. M. Lahti, J. Organomet. Chem., 1997, 532, 109.

6 Gy. Keglevich, Zs. Böcskei, Gy. M. Keserű, K. Újszászy and L. D. Quin, J. Am. Chem. Soc., 1997, 119, 5095.

7 S. P. Ivonin, T. E. Terikovska, A. A. Chaikovskaya, A. P. Marchenko, G. N. Koydan, A. M. Pinchuk and A. A. Tolmachev, Heteroat. Chem., 1999, 10, 213.
8 A. A. Tolmachev, S. P. Ivonin, A. A. Chaikovskaya, T. E. Terikovska, T. N. Kudrya and A. M. Pinchuk, Heteroat. Chem., 1999, 10, 223.

9 Selected data for 3a: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 5.5\left(\mathrm{P}^{1}\right)$, $93.3\left(\mathrm{C}^{2}-\mathrm{P}\right),{ }^{2} J_{\mathrm{PP}}=72.6$; $\mathrm{M}_{\text {found }}^{+}=418.1920, \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$ requires 418.1939.
10 Selected data for 3b: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 0.2\left(\mathrm{P}^{1}\right)$, $94.1\left(\mathrm{C}^{2}-\mathrm{P}\right),{ }^{2} J_{\mathrm{PP}}=70.6$; $\mathrm{M}_{\text {found }}^{+}=502.2870, \mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$ requires 502.2878.
11 Selected data for $\mathbf{4 a}: \delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 5.3\left(\mathrm{P}^{1}\right), 23.4\left(\mathrm{C}^{2}-\mathrm{P}\right),{ }^{2} J_{\mathrm{PP}}=48.3 ; \delta_{\mathrm{H}}$ $6.90\left(\mathrm{dm}, J_{\mathrm{PH}}=38.0, \mathrm{C}^{5}-\mathrm{H}\right), 7.49\left(\mathrm{ddd}, J_{\mathrm{PH}}=J_{\mathrm{P}^{\prime} \mathrm{H}} \approx 13, J_{\mathrm{HH}}=1.4\right.$, $\left.\mathrm{C}^{3}-\mathrm{H}\right) ; \mathrm{M}^{+}$found $=434.1887, \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2}$ requires 434.1888.
12 Selected data for 4b: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 0.9\left(\mathrm{P}^{1}\right), 24.1\left(\mathrm{C}^{2}-\mathrm{P}\right),{ }^{2} J_{\mathrm{PP}}=49.4$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 18.4\left(J_{\mathrm{PC}}=3.6, \mathrm{C}^{4}-\mathrm{CH}_{3}\right)$, $23.1\left(p-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.2$ $\left(o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.1\left(J_{\mathrm{PC}}=15.9\right.$, $\left.o-\mathrm{CHMe}_{2}\right), 34.4\left(p-\mathrm{CHMe}_{2}\right), 44.5$ $\left(\mathrm{C}^{2^{\prime \prime}}\right), 66.9\left(J_{\mathrm{PC}}=6.9, \mathrm{C}^{3^{\prime \prime}}\right), 119.8\left(\mathrm{C}^{1^{\prime}}\right), 122.2\left(J_{\mathrm{PC}}=11.1, \mathrm{C}^{3^{\prime}}\right), 133.7$ $\left(J_{\mathrm{PC}}=19.9, \quad J_{\mathrm{P}^{\prime} \mathrm{C}}=151.4, \mathrm{C}^{2}\right), 137.7 \quad\left(J_{\mathrm{PC}}=J_{\mathrm{P}^{\prime} \mathrm{C}}=5.4, \mathrm{C}^{5}\right), 142.4$ $\left(J_{\mathrm{PC}}=18.4, J_{\mathrm{P}^{\prime} \mathrm{C}}=14.6, \mathrm{C}^{4}\right), 147.5\left(J_{\mathrm{PC}}=17.3, J_{\mathrm{P}^{\prime} \mathrm{C}}=6.1, \mathrm{C}^{3}\right), 152.8$ $\left(\mathrm{C}^{4}\right), 156.9\left(J_{\mathrm{PC}}=14.7, \mathrm{C}^{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.04\left(\mathrm{dm}, J_{\mathrm{PH}}=38.2, \mathrm{C}^{5}-\right.$ $\mathrm{H}), 7.42\left(\mathrm{ddd}, J_{\mathrm{PH}}=J_{\mathrm{P}^{\prime} \mathrm{H}} \approx 13, J_{\mathrm{HH}}=1.2, \mathrm{C}^{3}-\mathrm{H}\right) ; \mathrm{M}_{\text {found }}^{+}=518.2832$, $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2}$ requires 518.2827 .
13 Selected data for 5a: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 19.1\left(\mathrm{P}^{1}\right), 51.3\left(\mathrm{C}^{2}-\mathrm{P}\right),{ }^{2} J_{\mathrm{PP}}=34.7$; $\mathrm{M}_{\text {found }}^{+}=450$.
14 Selected data for 5b: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 19.5\left(\mathrm{P}^{1}\right), 52.2\left(\mathrm{C}^{2}-\mathrm{P}\right),{ }^{2} J_{\mathrm{PP}}=36.1$; $\mathrm{M}_{\text {found }}=534$.
15 L. D. Quin, Rev. Heteroat. Chem., 1990, 3, 39.
16 Selected data for 7: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 3.4\left(\mathrm{P}^{1}\right), 90.7\left(\mathrm{C}^{3}-\mathrm{P}\right),{ }^{3} J_{\mathrm{PP}}=33.6$; $\mathrm{M}^{+}{ }_{\text {found }}=544.3323, \mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$ requires 544.3348 .
17 Selected data for 8: $\delta_{\mathrm{P}}\left(\mathrm{CDCl}_{3}\right) 7.1\left(\mathrm{P}^{1}\right), 23.4\left(\mathrm{C}^{3}-\mathrm{P}\right),{ }^{3} J_{\mathrm{PP}}=21.8$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.2\left(J_{\mathrm{PC}}=6.2, \mathrm{C}^{4}-\mathrm{CH}_{3}\right), \quad 31.3\left(p-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.3$ $\left(J_{\mathrm{PC}}=3.5, o-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.4\left(p-\mathrm{CMe}_{3}\right), 38.9\left(J_{\mathrm{PC}}=3.5, o-\mathrm{CMe}_{3}\right), 44.9$ $\left(\mathrm{C}^{2^{\prime \prime}}\right), 67.5\left(J_{\mathrm{PC}}=5.8, \mathrm{C}^{3^{\prime \prime}}\right), 118.6\left(J_{\mathrm{PC}}=4.6, \mathrm{C}^{1^{\prime}}\right), 123.1\left(J_{\mathrm{PC}}=10.5\right.$, $\left.\mathrm{C}^{3^{\prime}}\right), \quad 126.8 \quad\left(J_{\mathrm{PC}}=13.2, \quad J_{\mathrm{P}^{\prime} \mathrm{C}}=21.0, \quad \mathrm{C}^{5}\right), \quad 128.2 \quad\left(J_{\mathrm{PC}}=21.4\right.$, $\left.J_{\mathrm{P}^{\prime} \mathrm{C}}=154.5, \mathrm{C}^{3}\right), 139.7\left(J_{\mathrm{PC}}=15.8, \mathrm{C}^{4}\right), 139.9\left(J_{\mathrm{PC}}=14.6, J_{\mathrm{P}^{\prime} \mathrm{C}}=8.6\right.$, $\left.\mathrm{C}^{2}\right), 153.3\left(J_{\mathrm{PC}}=2.4, \mathrm{C}^{4}\right), 158.8\left(J_{\mathrm{PC}}=11.7, \mathrm{C}^{2^{2}}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.66$ $\left(\mathrm{dm}, J_{\mathrm{PH}}=35.5, \mathrm{C}^{5}-\mathrm{H}\right), 7.37\left(\mathrm{ddd}, J_{\mathrm{PH}}=28.1, J_{\mathrm{P}^{\prime} \mathrm{H}}=12.1, J_{\mathrm{HH}}=2.5\right.$, $\left.\mathrm{C}^{2}-\mathrm{H}\right) ; \mathrm{M}^{+}$found $=560.3292, \mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2}$ requires 560.3297.

